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Signatures of dynamical tunneling in semiclassical quantum dots
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We study transport in large, and strongly open, quantum dots, which might typically be viewed as lying well
within the semiclassical regime. The low-temperature magnetoresistance of these structures exhibits regular
fluctuations, with just a small number of dominant frequency components, indicative of the presence of
dynamical tunneling into regular orbits. Support for these ideas is provided by the results of numerical simu-
lations, which reveal wave function scarring by classically inaccessible orbits, which is found to persist even
in the presence of a moderately disordered dot potential. Our results suggest that dynamical tunneling may play
a more generic role in transport through mesoscopic structures than has thus far been appreciated.
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[. INTRODUCTION gives rise to discrete levels that agree with the robust states
obtained in quantum-mechanical calculati¢fs8]. The dy-
Semiconductor quantum dots are the solid-state analog ¢famical tunneling therefore provides a natural interpretation
billiard systems and have been widely studied in recent year®r the nonuniform level broadening that arises in these
as an experimental probe of quantum chabk Electron structures, and the discrete states that survive the introduc-
transport in these structures involves a process in which ele¢ion of the coupling are found to have wave functions that
trons are injected into the dot and scatter multiply from itsare stronglyscarredby periodic orbitg8]. As such, this be-
confining walls, before finally escaping to the source or drairhavior shows many similarities with the effect msonant
reservoirs. The electrical properties of the dots are therefor#apping which is well known from studies of nuclear phys-
expected to strongly reflect their classical scattering charadcs and microwave cavitiegl9-21], and which occurs in
teristics, and it is this property that makes them interestingystems in which a small number of localized states are
for the study of quantum chaos. coupled to a continuum.
In most discussions of quantum chaos, it is typica| to Here, we explore whether Signatures of dynamical tunnel-
focus on the behavior exhibited by systems in the semiclaghg can be observed in much larger quantum datéh ¢
sical limit, where the size of the dét) is much larger than ~60), which are very strongly coupled to their reservoirs
the electron wavelength\¢) and its leads support a large (W/Ng~15). While these structures lie well within the semi-
number of one-dimensional mode#&/& \r, whereW is the  classical limit, we find that their transport characteristics, in
lead width [2]. Recently, however, we have investigated thefact, show many similarities with those reported in our ear-
transport in quantum dots, intermediate between the semlier studies. Their magnetoconductance fluctuations, in par-
classical and quantum limits L(\p<10,W/Ag~1-5) ticular, exhibit specific frequency components, as found pre-
[3_10]' Crucial to understanding the proper’[ies of theseViOUS|y in structures where dynamical tunneling is significant
structures is thenonuniform broadening of their discrete [8]. Another interesting effect, and one which appears to be
level spectrum, which arises when the dot is coupled to it¢inique to these strongly open dots, is an enhancement of the
environmen{9—11]. If we consider the case where we start fluctuation amplitude in the magnetic-field regime where
from an initially isolated dot, with a discrete density of Landau quantization becomes resolved. This behavior is dis-
states, the effect of opening the leads to the reservoirs is teussed in terms of the ability of the magnetic field to pro-
cause a strong broadening of the majority of these stateg)ote electron trapping in the dots, once the curvature of the
while leaving a much smaller subset almost unpertufleéd ~ cyclotron orbits becomes comparable to their size.
Experimentally, this effect may be probed by the application

of a mag.netic fie!d_, whlich sweeps the_ surviv[ng _state; past II. EXPERIMENT
the Fermi level, giving rise to reproducible oscillations in the
low-temperature conductancgl,7,12. For semiclassical Quantum dots were formed in the high-mobility two-

analysis of this effect, it is important to note that the dotsdimensional electron gas of the InAs/AISb heterojunction
typically exhibit a mixed classical phase space, featuring system, by photolithography and wet etchirigig. 1)
well-defined Kolmogorov-Arnold-MosgiKAM) islands that  [22,23. In contrast to more widely studied GaAs-based
correspond to periodic orbifs,13]. While much effort has structures[1], the advantage of this material system is its
focused on the fractal conductance fluctuations resultindnigh electron density €102 cm 2 at 4.2 K), and corre-
from this phase spadé3-1§, we have recently shown that spondingly small Fermi wavelengt@5 nm. The mobility of

the dominant components of these fluctuations arise from ththe electron layer ranges from 250 000 to 300 006/¢ra at
dynamical tunnelingpf electrons into the KAM islandE8]. 4.2 K, corresponding to a mean free path o#-5 um.
The idea is that the tunnel-coupled orbits serve as quasiFhree different dots were investigated and their dimensions
bound states of the open dot, and quantization of their actioare listed in Table [also see Fig. )1 where we also indicate
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FIG. 2. Magnetoresistance for a single dot at different tempera-
tures. From top to bottom, temperatures are 4.2, 2.4, 1.8, 1.1, 0.92,
0.7, 0.5, 0.4, 0.3, 0.2, and 0.12 K. The various plots have been

SYMMETRIC offset for clarity.

ASYMMETRIC

varying background. At higher fields, the fluctuations coexist
FIG. 1. Micrograph showing the different types of quantum-dotyjth the Shubnikov—de Haas oscillations associated with the
structures studied here. depopulation of successive Landau levels. Note the low re-
sistance of this dot, which indicates that its leads support a
the notation that we use hereafter to refer to these structurefarge number of modes. This was found to be the case for all
The samples were mounted on ceramic-bodied chip carrierthree dots investigated here, as we indicate in Table I, where
and their magnetoresistance was measured in the temperatwe have estimated th@inimummode number from the re-
range from 0.01 to 4.2 K, using standard low-frequencysistance of the different dots. In Fig. 3, we show, in an ex-
lock-in detection and a constant current of 3 nA. panded view, the low-field fluctuations in the three dots. The
In Fig. 2, we show the magnetoresistance of Aocat a  symmetry of these data around zero magnetic field is ex-
series of different temperatures. Reproducible fluctuationpected 24] from the Landauer-Bitiker formula, and demon-
emerge as the temperature is lowered below 1 K, and, at lowtrates the reproducibility of our measurements. The large
magnetic fields, these are superimposed on a monotonicalmplitude of fluctuation exhibited by each of these curves

TABLE |. Parameters for the different dots studied in the experiment.

L H W R4‘2 ka 5grmsc

Dot Design (um) (um) (um) L/Ng WINg Q) NP (€9/h)
A Symmetric 15 3.1 0.9 60 36 1658 16 0.12
B Symmetric 1.6 3.0 1.2 64 48 970 26 0.37
C Symmetric 2.0 3.0 1.2 80 48 879 30 0.28

&The zero-field resistance of the dot, measured at 4.2 K.

PThe mode number in the point contact leads. This is estimated by assuming that the measured dot resistance
is dominated by the contribution from the point contacts, which are taken to add Ohmically for the determi-
nation of the mode number.

‘Root-mean-square amplitude of fluctuation at 0.01 K. The field range #0rf to+0.5 T was used for this
calculation.
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fluctuations were obtained by subtracting a slowly varying back- )

ground, similar to that apparent in Fig. 2, from the original magne- FIG. 4. Low-temperature magnetoresistance of dotand C,

toresistance. Curves for doBsand C are offset for clarity. showing the enhancement of the fluctuations at high magnetic
fields.

(Table ) is suggestive of a high degree of electron phase

coherence at this temperaty2b,26. ages in Fig. 1, and we have also included a random back-

It is clear from the data presented in Fig. 3 that, even inground potential, of maximum amplitude 2 meV, at the bot-
the large and strongly coupled dots that we study, the contom of the dot. This last feature is considered to be necessary
ductance fluctuations exhibit a quasiregular nature. Such béor calculations of such large dots. The transmission proper-
havior is well known from previous investigations of smaller ties of the dot are calculated numerically using a transfer-
dots[3,4], and has recently been attributed to the dynamicamatrix method, which we have previously applied success-
tunneling of electrons into orbits lying on KAM island@i8].  fully to our studies of smaller structurg8—10. Due to
The observation of such quasiperiodic behavior here sucgifficulties associated with implementing this method in very
gests that the dynamical tunneling is not limited to smalllarge dots, the dot dimensions in Fig. 6 are roughly two-
dots, but can also occur in structures considered to lie in th#éhirds of those studied in our experiment. The Fermi energy
semiclassical limit. This is one of the issues that we explords also somewhat small¢84 meV, as opposed to an experi-
in our numerical simulations of these structures below. mental value of 95 me)/ so we emphasize that we do not

The large dots that we study also provide a useful opporexpect our calculations to provide exact, quantitative, agree-
tunity to investigate the details of electron interference in thenent with the results of experiments. Nonetheless, we be-
regime where the Landau quantization is well resolved. Thidieve that the structure shown in Fig. 5 does provide the basis
regime is indicated in experiment by the emergence ofor a meaningful system for a qualitative comparison with
Shubnikov—de Haas oscillations in the magnetoresistancée results of experiment.
which are well known to be periodic in the inverse magnetic In Fig. 5, we show the calculated magnetoresistance of
field. The oscillations are most clearly observed in the
higher-temperature traces of Fig. 2, but are obscured by fluc- [ L — T T
tuations at lower temperatures. The amplitude of these fluc- ]
tuations actually increases with magnetic field in this regime, 36 - .
which behavior can be seen more clearly in Fig. 4. Note, in
particular, the data for dd€ in this figure, which show fluc-
tuations whose amplitude exceedsed® at the highest
magnetic field$27]. This behavior is quite distinct from that
found in previous studief28,29, which have explored the
evolution of the fluctuations with magnetic field in dots
coupled to their reservoirs by few-mode leads.
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To explore the origins of the behavior revealed in our i ]
experiments, we have performed numerical simulations of e
magnetotransport in the dot geometry shown as an inset to 24_05 025 0 0.25 05
Fig. 5. The dot is defined by hard walls, which we believe | MAGNETIC FIELD (TESLA). )
should reasonably approximate the potential in the etched
dots that we study here. The corners of this dot are rounded FIG. 5. Calculated magnetoconductance of the dot shown as an

for consistency with the scanning electron microscopy im-nset.
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that the energy scale on which the scars recur is determined
by a quantization of the action of the associated semiclassical
orbits. In Fig. 6, it can be seen that the orbits that give rise to
om ! Bt NS | the scarring are not exactly identical, due to the increased
1 2 3 4 5 6 7 8 cyclqtron curvature at higher magnetic fields. Conseq_uently,
the field scale for recurrence of the scars evolves with the
FIG. 6. The upper panel shows calculated conductance fluctudnagnetic field itself, decreasing from 40 mT for the first
tions from Fig. 5 over a smaller range of magnetic field. The num-ecurrence to a roughly constant period of 9 mT for the last
bered symbols plotted on the graph indicate the magnetic fields dtve scars.
which the wave function of the open dot takes the form indicated in ~ As we illustrate in Fig. 7, there is a direct correspondence
the panels at the bottom of the figure. between the scarred wave functions of the open dot and the
eigenstates of the corresponding closed structure. In Fig.
the dot, whose leads support 19 propagating modes for th&@), we show one such eigenstate, computed at a magnetic
Fermi energy that we consider. As with our experimentalfield of 175 mT. This state corresponds almost exactly with
traces, we see that quasiperiodic fluctuations are superinthe wave function labeled 6 in Fig. @t should be pointed
posed upon larger scale background features in the magnetout that, unlike the open-dot calculations, this eigenstate was
conductance. In the upper panel of Fig. 6, we focus on theomputed without any background disorder. Thus, even with
low-field range of these data, having subtracted out the backelatively small disorder, we see that pure eigenstates can
ground variation. The resulting curve is quite reminiscent ofstill be selectively excited in transport through the open)dot.
the experimental data plotted in Fig. 3. The fluctuation am4n Figs. 7b) and 7c), we show the calculated eigenfunctions
plitude is somewhat larger, but this can be partly attributed tat magnetic fields of 182 and 190 mT, respectively. While
the fact that we have not included any inelastic scattering o¢losely related to the scarred eigenstate in Fi@), these
thermal broadening in our calculations. eigenfunctions have additional transverse modes, running
In previous studies of much smaller dots, we have foundacross the periodic orbit that gives rise to their scarring. In
that the periodicities evident in their magnetoconductancéigs. 4b) and 1c), the transverse mode numben) is equal
fluctuations are strongly correlated with the appearance db 2 and 4, respectively, and, although not shown here, we
groups of conductance resonances, spaced quite regularly rave also observed scars for whict=1, 3, and 5. As with
magnetic field[3-5]. These resonances in essence form ahe basic scar of Fig.(@, we find that these higher-order
framework over which the fluctuations are draped. We havdeatures also recur with magnetic field, although the associ-
also found that resonant states belonging to a particulaated conductance resonances are less pronounced. The
group all appear to have their amplitude maximized alongnagnetic-field periodicity of the recurrence increases slightly
the same classical periodic orbit. The results of Fig. 6 showvith m, with AB~10 mT for m=4. The existence of such
that such resonance effects can still be observed at the muéamilies of scars is actually expected from semiclassical
larger energy and size scales that we consider here. Note, periodic-orbit theory 30], and we have previously found evi-
particular, the points labeled 1 through 8 in the upper panetlence[6,8] for a similar shell structure in a dot with an area
of Fig. 6. The open-dot wave functions corresponding to25 times smaller than that considered here. In this structure,
these magnetic-field values are also shown in Fig. 6. In eachowever, only states witm=0 and 1 were observed. Aa
of the wave functions(which were calculated using the increases, it can be seen from Fig. 7 that the associated scars
method discussed in Rgi3]), the quantum mechanical am- develop a larger lateral spread, and, in such cases, there is a
plitude is concentrated along a classical periodic orbit thagreater overlap of the wave function with regions beyond the
forms a double-diamond-like pattern. The orbits themselve&AM island. This in turn permits faster tunneling, thereby
are not connected directly to the leads but are instead classiveakening the associated transmission resonances. The point
cally inaccessible to electrons injected into the dot. This feato note here is that, in the large dots that we consider, higher
ture suggests that the scars are generated by the dynamisalues ofm can actually be achieved before this leakage
tunneling of electrons into these orbits, as we discussed prdsecomes too large.
viously for much smaller dotg8]. In Ref.[8], it was argued In our discussion thus far, we have focused on the scars
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FIG. 9. Calculated magnetoconductance of a dot with a similar
. geometry to that considered in Fig. 5, but with a background disor-
1 2 3 4 5 6 der potential of maximum amplitude 20 meV. The left inset shows
the wave function of the open dot at a magnetic field of 0.66 T,

FigFIE?és&aI:r?c::gr?i)rmr\)/aerrliggsnézi fl?é?g_f.:_ig :Sﬁm:tggss;gm while the right inset shows the wave function at a magnetic field of
bols plotted on the graph indicate the magnetic fields at which ’[hé)'l8 T, for the purpose of comparison with the results of Fig. 6.

wave function of the open dot takes the form indicated in the panels . .
at the bottom of the figure. of panels 2 through 5 of Fig. 8 is that Landau-level depopu-

lation is accompanied by the dynamical tunneling of elec-
o , trons into localized orbits at the center of the dot.
observed at magnetic fields in excess of 100 mT. The double- 5 of the striking features of our experiment, was found
diamond-like scars of Figs. 7 and 8 are not observed at fieldg, pe g large enhancement of the fluctuation amplitude,
much lower than this, since the Lorentz force is required tQynich occurs in the regime where the Landau quantization
establish these orbits. Evidence for scarring is observed Hecomes resolvetFig. 4). While some evidence for this be-
low magnetic fields, and in this regime tends to be associate,yior can be seen already in our simulatiésse Fig. 8, it
predominantly with bouncing-ball orbits. An example of this js shown more clearly in Fig. 9. Here, we have calculated the
behavior is shown in Fig.(d), which shows the result of a | 4iiation of the longitudinal resistan¢@3,27]
calculation of the closed-dot wave function at a magnetic
field of 31 mT. _hN-T

In the opposite limit of increasing magnetic field, interest- " eZ NT
ing behavior is observed as the Landau-level quantizatiogyhereT is the transmission coefficient of the dot ads the
begins to become resolved. As an illustration of this, in thenumber of modegessentially the number of Landau levels
upper panel of Fig. 8 we replot the high-field data from Fig.that are available to couple to the dot from the reservoirs.
5, this time shOWing the variation of the conductance ﬂUC'The conductance (R&x) derived from this component
tuations withinverse magnetic field. A set of periodically should be compared with that which we plot in Fig. 4. Simi-
spaced minima are observed in the data, which we label ggr to the behavior found in experiment, our calculations
points 2 through 5. Away from the minim@nd any other show that the amplitude of the conductance fluctuations is
resonances we find that the wave function of the open dot relatively small at low magnetic fields, but that it increases as
generally exhibits a form quite similar to that shown in the the Shubnikov—de Haas oscillations onset. To obtain the data
panels labeled 1 and 6 in Fig. 8. Note in these two panelghown in Fig. 9, we have had to increase the magnitude of
how the transport is mediated by skipping orbits, whichthe disorder potential to about 20 meV, an order of magni-
couple directly from the leads into the dot. At the minimatyde larger than that considered in Fig. 5. Our earlier conclu-
labeled 2 through 5, however, the corresponding wave funcsjons seem to remain valid in this case, however, and in the
tions are dominated by groups of circular orbits that fill thEinsets to F|g 9 we show examp|es of Scarring behavior simi-
center of the dot, and which amompletely disconnected |ar to that found earlier.
from the leads. This periodic switching in inverse magnetic
field, from extended edge states to localized bulk orbits, is IV. DISCUSSION AND CONCLUSIONS
the quantum-dot analog of the Shubnikov—de Haas effect,
more typically observed in two-dimensional electron systems The main objective of this work is to address the extent to
[24]. In the quantum-dot version of this effect, the suggestiorwhich the transport description that we have developed in
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127 in fact support many modegsnore than 10 the suggestion
of Figs. 6 and 7 is that the diffraction effects remain signifi-
cant.

An interesting feature of our experiment was found to be
an enhancement of the conductance fluctuation amplitude at
high magnetic fields where the Landau quantization becomes
resolved(Fig. 4). This effect is reproduced in our numerical
simulations(Fig. 9), which also show that the scarring ef-
fects tend to become more clearly resolved as the magnetic
field is increasedFig. 6). We believe that the increased am-
plitude of the conductance fluctuations at higher field may
therefore be due to the ability of the magnetic field to pro-
mote more effective electron trapping in these very open
16K ] dots.

A couple of further points are worth emphasizing here.

] The first is that the key feature required for dynamical tun-
0 24K neling is the presence of periodic orbits at the center of some
B KAM island. It has been pointed out in the literature that the
soft confining walls generic to split-gate quantum dots often
MAGNETIC FREQUENCY (") give rise to such KAM features, typically giving rise to a
ixed phase space. As the results presented here suggest,
owever, the presence of soft wallsriet a prerequisite for
the tunneling behavior. The experimental work presented
here is performed on dots that are formed by etching of the
studies of smaller dof8-10] is relevant to the discussion of semiconductor substrate and can therefore be expected to
much larger, strongly open, structures. An important concluhave relatively hard wall§32]. Similarly, our numerical
sion that followed from our earlier work, is that transport simulationsassumea hard-walled system, but in spite of this
through open dots can be dominated by the dynamical turthey show clear evidence for scarring due to classically in-
neling of electrons into classically inaccessible, regular oraccessible orbits. The point is that, even for a hard-walled
bits [8]. Quantization of these semiclassical orbits gives risestructure such as that considered in our calculations, the per-
to a series of discrete energy levédsd associated scarring turbing presence of the lead8] tends to set up a mixed
of the wave functioly which are only weakly broadened by phase space, which is therefore a quite generic property of
the presence of the coupling between the dot and its reseopen systems. Another important point to note is that, while
voirs. The key experimental result associated with the dywe have considered differing degrees of disorder in our cal-
namical tunneling is the observation of quasiperiodic fluctuaculations, we have found the effects that we discuss to be
tions, dominated by just a small number of frequencyquite robust to the presence of this disorder.
components, in the conductance of the {8t Perhaps While our discussion has focused on the influence of dy-
somewhat surprisingly, similarly regular fluctuations werenamical tunneling in open quantum dots, many of our con-
also observed in the large dots that we study HEig. 3),  clusions are consistent with those obtained in generic studies
suggesting that dynamical tunneling may even be importandf open scattering billiardg33—35. Backer et al. [33], for
for transport in these structures. Indeed, as we illustrate iexample, have studied the eigenstates of the cosine billiard,
Fig. 10, a Fourier analysis of the conductance fluctuations imnd have shown that these are broadened in a nonuniform
these dots typically reveals the presence of a small number @hanner when the billiard is connected to semi-infinite leads.
frequency components, reminiscent of the behavior found iThe magnitude of the resultant broadening can be quantified
Refs.[3-6]. in terms of a parameten [33] that expresses the degree of

Numerical evidence for the role of dynamical tunneling in overlap of the cavity eigenfunctions with the leads. Consis-
these large dots is provided in Figs. 6—8, which show theent with the conclusions of Rdi9], the authors showed that
results of numerical calculations of a similar device to thatthe weakest broadening arises for those states whose wave
studied in experiment. The characteristic signature of dyfunctions exhibit the signatures of periodic orbits, which are
namical tunneling is the presence of wave function scarsglassically inaccessible to particles injected into the billiard
whose classical orbits aieaccessibleo electrons injected from the leads. In other related work, the classical analog of
into the dot from the leads. The various scars shown in Figghe scattering matrix has been formulated and has been ap-
6 and 7 clearly show this property. Previoughy,31], we plied to the discussion of transport in quantum systems
have shown that such isolated scars arise from the diffractiowhose classical counterparts exhibit purely chapsd] or
of electron waves, as they are injected into the dot from thenixed [34,35 dynamics. In chaotic systems, good corre-
leads. This diffraction is understood to be a consequence afpondence between the predictions of the classical and quan-
the fact that, in the case where the leads support a sméilim calculations was reported when the billiard was coupled
number of modes, the lead width is comparable to the electo leads that support a large number of modes. In mixed
tron wavelength. While in the case of interest here the leadsystems, however, additional structure, absent in the classical

-
o

(-]

FOURIER POWER (arbitrary units)

0 30 60 20 120 150

FIG. 10. Fourier power spectra of the conductance fluctuation
in dot A at several different temperatur@sdicated. Successive
curves are offset for clarity.
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formulation of the scattering matrix, was found to be presenfor these ideas appears to be provided by the results of nu-

in the quantum counterpart due to dynamical tunnelBtj. merical simulations, which reveal wave function scarring by

Of particular importance for our study here, the tunneling-classically inaccessible orbits, which is even found to persist

related features were even found to be present when the caw the presence of a moderately disordered dot potential. Our

ity leads were configured to support as many as 20 modesesults suggest that dynamical tunneling may play a more

similar to the situation in our experimentsee Table)l generic role in transport through mesoscopic structures than
In conclusion, we have studied the transport in large, andhas thus far been appreciated.

strongly open, quantum dots, which might typically be

viewed as lying well within the semlclassmgl regime. We ACKNOWLEDGMENTS
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